

Challenges in Data Intensive Computing

Jim Tomkins

Presented at SOS10 Maui, Hawaii March 6 - 9, 2006

Models of Interaction with HEC Storage Systems: HEC Machines

- Capability Scientific Computing Thousands of Processors working on a single application with one to a few applications sharing the machine
 - Large Parallel Files Restart, Graphics
 - Large load on meta-data services
 - Very large file system needed to support capability applications
 - High Bandwidth is needed from a single file system Disk I/O is a system performance bottleneck
 - Write Dominated (~90% of disk I/O)
 - Defensive I/O increases stress on file system

Models of Interaction with HEC Storage Systems: HEC Machines

- Capacity Scientific Computing Up to a thousand or so processors working on a single application with several to many applications sharing the machine
 - Small to Medium Size Parallel Files Restart, Graphics
 - Multiple smaller file systems can make sense
 - Meta-data services can be distributed among file systems each with own meta-data support
 - Total Bandwidth needed is high but it can be divided among several file systems - Disk I/O is still a system performance bottleneck but less so than for capability computing
 - Write Dominated (~90% of disk I/O)
 - Defensive I/O increases stress on file system

Models of Interaction with HEC Storage Systems: At the Desktop or other On-Site Machines

- Move selected data off HEC machine
 - Archival storage
 - Graphics processing
- Raw data is not moved from HEC machine to desktop
 - Display graphical images at desktop
 - HEC systems generate so much data that it would be impossible to move any significant amount of it to a desktop system even if the bandwidth were available.

Models of Interaction with HEC Storage Systems: From Remote Systems

- Minimize the movement of raw data to remote systems.
 - Display graphical images remotely
 - Leave as much of the data at the site where it is generated as possible
 - Remote bandwidth is expensive currently it is impractical to move significant amounts of data to remote locations.

Globally Accessible File System and HEC Systems

- On-Site Globally Accessible File System
 - For all current large HEC systems the file system is a serious bottleneck.
 - A globally accessible file system will increase contention and reduce the efficiency of the HEC system.
 - The globally accessible model makes sense for archiving and visualization on-site but not for HEC systems.

Globally Accessible File System and HEC Systems

- Remote Globally Accessible File System
 - Latency locking, time-outs, packet size
 - Reliability lost packets, data errors, network dropout
 - Performance remote network bandwidth

Technical Challenges for a Globally Accessible File System

- Latency
 - In relative terms latency is increasing distance and intervening electronics
 - Impact on HEC system performance for accessing remote data
 wait time
- Bandwidth
 - On-site bandwidth is much less than HEC system bandwidth
 - Remote bandwidth is very expensive and will be no more than on-site bandwidth
 - Encryption adds to bandwidth issues
- Reliability
 - Number of switches
 - Cables
- Bottom Line How to keep disk I/O from being a performance bottleneck for HEC systems.

File System Development: What Should the Focus Be?

- Parallel File Systems for HEC
 - Scalability Bandwidth, Meta Data Services
 - Reliability Meta-data, OST failover, disk rebuilds
- Data Movement Between Systems
 - Parallel data movers
 - Reliability

Conclusions

- Globally accessible file systems don't make sense for an HEC system's direct disk I/O.
 - HEC system waiting on desktop or small server systems
 - Increased latency for storage that is farther from the HEC machine
 - Bandwidth will be an even greater issue
 - Sharing HEC system's storage with other systems will have a negative impact on HEC system performance. A 10K node machine could be forced to wait on a single desktop system for file access.
- Globally accessible file systems make sense for the situation where all the client systems are similar and disk I/O is not a mjor performance bottleneck.

